Blocking light in compact Riemannian manifolds
نویسندگان
چکیده
We study compact Riemannian manifolds .M;g/ for which the light from any given point x 2 M can be shaded away from any other point y 2 M by finitely many point shades in M . Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K Burns and E Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property.
منابع مشابه
A Characterization of round Spheres in Terms of Blocking Light
A closed Riemannian manifold M is said to have cross (compact rank one symmetric space) blocking if whenever p 6= q are less than the diameter apart, all light rays from p can be shaded away from q with at most two point shades. Similarly, a closed Riemannian manifold is said to have sphere blocking if for each p ∈M all the light rays from p are shaded away from p by a single point shade. We pr...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملFractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کامل